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1 Introduction

This project is concerned with the PF.WRF model as a means to enable more accurate predic-
tions of wind fluctuations and subsurface storage. As developed at LLNL, PF.WRF couples a
groundwater (subsurface) and surface water flow model (ParFlow) to a mesoscale atmospheric
model (WRF, Weather Research and Forecasting Model). It was developed as a unique tool to
address coupled water balance and wind energy questions that occur across traditionally sepa-
rated research regimes of the atmosphere, land surface, and subsurface. PF.WRF is capable of
simulating fluid, mass, and energy transport processes in groundwater, vadose zone, root zone,
and land surface systems, including overland flow [4, 5], and allows for the WRF model to both
directly drive and respond to surface and subsurface hydrologic processes and conditions.

The current PF.WRF model is constrained to have uniform spatial gridding below the land
surface and matching areal grids with the WRF model at the land surface. There are often cases
where it is advantageous for land surface, overland flow and subsurface models to have finer
gridding than their atmospheric counterparts. Finer vertical discretization is also advantageous
near the land surface (to properly capture feedbacks) yet many applications have a large vertical
extent. However, the surface flow is strongly dependent on topography leading to a need for
greater lateral resolution in some regions and the subsurface flow is tightly coupled to the
atmospheric model near the surface leading to a need for finer vertical resolution. In addition,
the interactions (e.g. rain) will be highly variable in space and time across the problem domain
so an adaptive scheme is preferred to a static strategy to efficiently use computing and memory
resources. As a result, this project focussed on algorithmic research required for development
of an adaptive simulation capability in the PF.WRF system and its subsequent use in an
application problem in the Central Valley of California.

This report documents schemes of use for a future implementation of an adaptive grid capa-
bility within the ParFlow subsurface flow simulator in PF.WRF. The methods describe specific
handling of the coarse/fine boundaries within a cell-centered discretization of the nonlinear
∗This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
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parabolic Richards’ equation model for variable saturated flow. In addition, we describe de-
velopment of a spline fit and table lookup method implemented within ParFlow to enhance
computational efficiency of variably saturated flow calculations.

The rest of this document is organized as follows. Section 2 details the findings of appro-
priate AMR methods for use with Richards’ equation, and section 3 discusses the work done
to implement a spline fit to data for the relative permeability curves. Section ?? discusses
the specification of the Central Valley site, and the last section gives some concluding remarks
about the current state of the ParFlow code.

2 Adaptive Mesh Refinement Discretization for Richards’ Equa-
tion

In ParFlow, discretization of the Richards’ equation is done with a uniform mesh across each
dimension of space. The mesh size must be small to capture the effects of groundwater flow near
riverbeds. However, this causes a fine mesh size for the entire computational domain. Our goal
is to discretize Richards’ Equation to use adaptive mesh refinement (AMR), allowing for a fine
mesh where it is needed (near the surface) and a coarser mesh where it can save calculations
and computer memory (away from the surface).

2.1 Discretization of Richards’ Equation

ParFlow employs the Richards’ equation model for variably saturated flow. This model is
written as, [6]:

S(p)Ss
∂p

∂t
+
∂(S(p)ρ(p)φ)

∂t
−∇ · (K(p)ρ(p)(∇p− ρ(p)~g)) = Q, (1)

in Ω, where S is the water saturation, p is the pressure head of water, Ss is the specific storage
coefficient, ρ is the density, φ is the porosity of the medium, K(p) is the hydraulic conductivity
tensor, ~g is the gravity vector, and Q is the water source/sink term. The hydraulic conductivity
can be broken down into:

K(p) =
k̄kr(p)
µ

,

where k̄ is the intrinsic permeability, kr is the relative permeability, and µ is the viscosity. The
relative permeability is a function of the pressure head and is defined by the Van Genuchten
function:

kr(p) =

(
1− (αp)n−1

(1+(αp)n)m

)2

(1 + (αp)n)m/2
.

The boundary conditions are:

p = pD, on ΓD

−K(p)∇p · n = gN , on ΓN ,
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where ΓD ∪ ΓN = ∂Ω, ΓD 6= ∅, and ~n is an outward pointing, unit, normal vector to Ω. The
initial condition is given by:

p = p0(x), t = 0.

Let LHS denote the left-hand side of Richards’ equation:

LHS = S(p)Ss
∂p

∂t
+
∂(S(p)ρ(p)φ)

∂t
, (2)

and let RHS denote the right-hand side:

RHS = ∇ · (K(p)ρ(p)(∇p− ρ(p)~g)) +Q. (3)

We can discretize (2) using an implicit backward Euler method in time:

LHS = S(pni,j,k)Ssi,j,k

pn+1
i,j,k − p

n
i,j,k

∆t
+ φi,j,k

S(pn+1
i,j,k)ρ(pn+1

i,j,k)− S(pni,j,k)ρ(pni,j,k)

∆t
, (4)

We can discretize (3) by using an implicit cell-centered finite difference method in space:

RHS =

[
k̄(x)i+ 1

2
,j,kkr(p

n
i+ 1

2
,j,k

)
pn+1
i+1,j,k − p

n+1
i,j,k

∆x
− k̄(x)i− 1

2
,j,kkr(p

n
i− 1

2
,j,k

)
pn+1
i,j,k − p

n+1
i−1,j,k

∆x

]
1

∆x

+

[
k̄(x)i,j+ 1

2
,kkr(p

n+1
i,j+ 1

2
,k

)
pn+1
i,j+1,k − p

n+1
i,j,k

∆y
− k̄(x)i,j− 1

2
,kkr(p

n
i,j− 1

2
,k

)
pn+1
i,j,k − p

n+1
i,j−1,k

∆y

]
1

∆y

+

[
k̄(x)i,j,k+ 1

2
kr(pni,j,k+ 1

2

)

(
pn+1
i,j,k+1 − p

n+1
i,j,k

∆z
− ρz(pn+1

i,j,k+ 1
2

)g

)

− k̄(x)i,j,k− 1
2
kr(pni,j,k− 1

2

)

(
pn+1
i,j,k − p

n+1
i,j,k−1

∆z
− ρz(pn+1

i,j,k− 1
2

)g

)]
1

∆z
+Qn+1

i,j,k . (5)

Harmonic averaging and upwinding will be used to determine the interface coefficients of the
intrinsic permeability, k̄(x), and the relative permeability, kr(p), respectively. Combining (4)
and (5), we get:

F (pn+1
i,j,k) = ∆x∆y∆z

[
S(pni,j,k)Ssi,j,k

(pn+1
i,j,k − p

n
i,j,k) + φi,j,k(S(pn+1

i,j,k)ρ(pn+1
i,j,k)− S(pni,j,k)ρ(pni,j,k))

]
− ∆t∆y∆z

[
k̄(x)i+ 1

2
,j,kkr(p

n
i+ 1

2
,j,k

)
pn+1
i+1,j,k − p

n+1
i,j,k

∆x
− k̄(x)i− 1

2
,j,kkr(p

n
i− 1

2
,j,k

)
pn+1
i,j,k − p

n+1
i−1,j,k

∆x

]

− ∆t∆x∆z

[
k̄(x)i,j+ 1

2
,kkr(p

n+1
i,j+ 1

2
,k

)
pn+1
i,j+1,k − p

n+1
i,j,k

∆y
− k̄(x)i,j− 1

2
,kkr(p

n
i,j− 1

2
,k

)
pn+1
i,j,k − p

n+1
i,j−1,k

∆y

]

− ∆t∆x∆y

[
k̄(x)i,j,k+ 1

2
kr(pni,j,k+ 1

2

)

(
pn+1
i,j,k+1 − p

n+1
i,j,k

∆z
− ρz(pn+1

i,j,k+ 1
2

)g

)

− k̄(x)i,j,k− 1
2
kr(pni,j,k− 1

2

)

(
pn+1
i,j,k − p

n+1
i,j,k−1

∆z
− ρz(pn+1

i,j,k− 1
2

)g

)]
−∆t∆x∆y∆zQn+1

i,j,k = 0 (6)
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2.2 Richards’ Equation with AMR

The discretization in (6) will present a problem when a fine cell shares an edge with a coarse cell.
If (i, j, k) is adjacent to a coarse cell, then the coarse cell’s center is not aligned with (i, j, k)’s
center. If the coarse cell data was to be used as in teh scheme above, an order of accuracy
would be lost. This paper will introduce two interpolation schemes (linear and quadratic [7])
to create a fine ghost node that uses both coarse and fine data to approximate what the data
will look like in the ghost cell. To simplify this paper, examples of these calculations will be
shown in 2D on only a portion of (6). The following discretization will be used:

(∇ · (K(x)∇P ))if,jf =
Kif+ 1

2
,jf (Pif+1,jf − Pif,jf )

hx
2 −

Kif− 1
2
,jf (Pif,jf − Pif−1,jf )

hx
2

+
Kif,jf+ 1

2
(Pif,jf+1 − Pif,jf )

hy
2 −

Kif,jf− 1
2
(Pif,jf − Pif,jf−1)

hy
2 . (7)

We will show how to modify this function for point (if, jf) at coarse/fine interfaces based on
Figure 1.
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Figure 1: AMR grid with two levels.

2.2.1 Linear Interpolation

First, linear interpolation will be used in order to calculate the x derivative of the point (if −
1
2 , jf) (the boundary between (ic, jc) and (if, jf), aligned with (if, jf), see Figure 2). Taylor
series expansions will need to be calculated for uif,jf , uic,jc, and uif+1,jf in terms of uif− 1

2
,jf :

uif,jf = uif− 1
2
,jf +

1
2
hx∂xuif− 1

2
,jf+ +

1
8
h2
x∂

2
xuif− 1

2
,jf +O(hx3), (8)

uic,jc = uif− 1
2
,jf −

1
2
Hx∂xuif− 1

2
,jf −

1
4
Hy∂yuif− 1

2
,jf +

1
8
H2
x∂

2
xuif− 1

2
,jf

+
1
8
HxHy∂x∂yuif− 1

2
,jf +

1
32
H2
y∂

2
yuif− 1

2
,jf +O(Hx

3) +O(Hy
3), (9)
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Figure 2: Linear interpolation consists of creating and combining Taylor series of the data at
the coarse cell and two fine cells in terms of the boundary between them to determine the flux
at the interface.

uif,jf−1 = uif− 1
2
,jf +

1
2
hx∂xuif− 1

2
,jf − hy∂yuif− 1

2
,jf +

1
8
h2
x∂

2
xuif− 1

2
,jf

− 1
2
hxhy∂x∂yuif− 1

2
,jf +

1
2
h2
y∂

2
yuif− 1

2
,jf +O(hx3) +O(hy3). (10)

Subtracting (9) from (8) gives

uif,jf − uic,jc =
Hx + hx

2
∂xuif− 1

2
,jf +

1
4
Hy∂yuif− 1

2
,jf +

h2
x −H2

x

8
H2
x∂

2
xuif− 1

2
,jf

− 1
8
HxHy∂x∂yuif− 1

2
,jf −

1
32
H2
y∂

2
yuif− 1

2
,jf +O(Hx

3) +O(Hy
3) +O(hx3).

Appropriate calculations will give an approximation of the first derivative of uif− 1
2
,jf with

respect to x:

∂xuif− 1
2
,jf =

2(uif,jf − uic,jc)
Hx + hx

− Hy

2(Hx + hx)
∂yuif− 1

2
,jf

+ O(Hx − hx) +O
(

HxHy

Hx + hx

)
+O

(
H2
y

Hx + hx

)
. (11)

Now an approximation of the derivative of uif− 1
2
,jf with respect to y is needed to finish the

scheme. To begin, subtract (10) from (8) to yield

uif,jf − uif,jf−1 = hy∂yuif− 1
2
,jf +

1
2
hxhy∂x∂yuif− 1

2
,jf

− 1
2
h2
y∂

2
yuif− 1

2
,jf +O(hy3). (12)

Appropriate calculations will give an approximation of the first derivative of uif− 1
2
,jf with

respect to y,

∂yuif− 1
2
,jf =

uif,jf − uif,jf−1

hy
+O(hx) +O(hy). (13)
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Substituting (13) and (11) will give an approximation of the first derivative of uif− 1
2
,jf with

respect to x,

∂xuif− 1
2
,jf =

2(uif,jf − uic,jc)
Hx + hx

−
Hy(uif,jf − uif,jf−1)

2hy(Hx + hx)

+ O(Hx − hx) +O
(

HxHy

Hx + hx

)
+O

(
H2
y

Hx + hx

)
. (14)

Now, the y derivative of uif,jf+ 1
2

will be calculated using linear interpolation. To do this,
Taylor series expansions will need to be computed for uif,jf , uic+1,jc+1, and uif+1,jf in terms of
uif,if+ 1

2
(the boundary between (ic+ 1, jc+ 1) and (if, jf), aligned with (if, jf)). This gives,

uif,jf = uif,jf+ 1
2
− 1

2
hy∂yuif,jf+ 1

2
+

1
8
h2
y∂

2
yuif,jf+ 1

2
+O(hy3), (15)

uic+1,jc+1 = uif,jf+ 1
2

+
1
2
Hy∂yuif,jf+ 1

2
+

1
4
Hx∂xuif,jf+ 1

2
+

1
8
H2
y∂

2
yuif,jf+ 1

2

+
1
8
HxHy∂x∂yuif,jf+ 1

2
+

1
32
H2
x∂

2
xuif,jf+ 1

2
+O(Hy

3) +O(Hx
3), (16)

and

uif+1,jf = uif,jf+ 1
2
− 1

2
hy∂yuif,jf+ 1

2
+ hx∂xuif,jf+ 1

2
+

1
8
h2
y∂

2
yuif,jf+ 1

2

− 1
2
hxhy∂x∂yuif,jf+ 1

2
+

1
2
h2
x∂

2
xuif,jf+ 1

2
+O(hy3) +O(hx3). (17)

Subtracting (16) from (15) yields,

uif,jf − uic+1,jc+1 = −Hy + hy
2

∂yuif,jf+ 1
2
− 1

4
Hx∂xuif,jf+ 1

2
+
h2
y −H2

y

8
∂2
yuif,jf+ 1

2

− 1
8
HxHy∂x∂yuif,jf+ 1

2
− 1

32
H2
x∂

2
xuif,jf+ 1

2
+O(Hy

3) +O(Hx
3) +O(hy3).

Appropriate calculations will yield an approximation of the first derivative of uif,jf+ 1
2

with
respect to y,

∂yuif,jf+ 1
2

= −
2(uif,jf − uic+1,jc+1)

Hy + hy
− Hx

2(Hy + hy)
∂xuif,jf+ 1

2

+ O(Hy − hy) +O
(

HxHy

Hy + hy

)
+O

(
H2
x

Hy + hy

)
. (18)

An approximation of the first derivative of uif,jf+ 1
2

with respect to x is needed to complete the
scheme. Subtracting (17) from (15) will give,

uif,jf − uif+1,jf = −hx∂xuif,jf+ 1
2

+
1
2
hxhy∂x∂yuif,jf+ 1

2

− 1
2
h2
x∂

2
xuif,jf+ 1

2
+O(hx3).

Appropriate calculations will give an approximation of the first derivative of uif,jf+ 1
2

with
respect to x,

∂xuif,jf+ 1
2

= −
uif,jf − uif+1,jf

hx
+O(hx) +O(hy). (19)
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Combining (18) and (19) gives the first order approximation of the first derivative of uif,jf+ 1
2

with respect to y,

∂yuif,jf+ 1
2

= −
2(uif,jj − uic+1,jc+1)

Hy + hy
+
Hx(uif,jf − uif+1,jf )

2hx(Hy + hy)
∂xuif,jf+ 1

2

+ O(Hy − hy) +O
(

HxHy

Hy + hy

)
+O

(
H2
x

Hy + hy

)
. (20)

The approximations of the derivatives in (14) and (20) can be substituted into the discretization
scheme of equation (7). The approximation of ∂xuif− 1

2
,jf found in (14) will replace:

Pif,jf − Pif−1,jf

hx
,

while the approximation of ∂yuif,jf+ 1
2

found in (20) will replace

Pif,jf+1 − Pif,jf
hy

.

The final discretization scheme using linear interpolation at the coarse/fine interface will be:

FDif,jf =
Kif+ 1

2
,jf (Pif+1,jf − Pif,jf )

hx
2

−
Kif− 1

2
,jf

hx

(4hy −Hy)uif,jf +Hyuif,jf−1 − 4hyuic,jc
2hy(Hx + hy)

+
Kif,jf+ 1

2

hy

−(4hx −Hx)uif,jf −Hxuif+1,jf + 4hxuic+1,jc+1

2hx(Hy + hy)

−
Kif,jf− 1

2
(Pif,jf − Pif,jf−1)

hy
2 , (21)

where

(∇ · (K(x)∇P ))if,jf = FDif,jf +O
(
Hx − hx
hx

)
+O

(
Hy − hy
hy

)
+ O

(
HxHy

hx(Hx + hx)

)
+O

(
HxHy

hy(Hy + hy)

)
+ O

(
H2
y

hx(Hx + hx)

)
+O

(
H2
x

hy(Hy + hy)

)
.

2.2.2 Quadratic Interpolation

For quadratic interpolation, a two stage process is done. The first stage will fit a quadratic
interpolant to the three coarse cells that share the appropriate edge and corners with the
interface that is being approximated. The second stage will fit another quadratic interpolant
through the two fine grid points that are normal to the original interpolant and the point
on the original interpolant aligned with the two fine nodes (see Figure 3). An x derivative

7
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Figure 3: Process of quadratic interpolation. Left: Create a quadratic interpolant through the
three coarse nodes to get a value that aligns with the fine cell data. Right: Use the interpolated
value and the fine cell data to find data at the fine ghost node.

approximation of the interface node (if − 1
2 , jf) will be obtained first. A quadratic interpolant

of the three coarse nodes is given by

L(τ) =
2∑
j=0

uj · 2∏
f=0,f 6=j

τ − τf
τj − τf


= uic,jc+1

τ(τ + 2Hy)
2Hy

2 − uic,jc
(τ −Hy)(τ +Hy)

Hy
2 + uic,jc−1

τ(τ −Hy)
2Hy

2 ,

where τ = 0 is located at the center data point, uic,jc. The point in this interpolant aligned
with the fine grid data, (ic, jc+ 1

4), will be obtained by evaluating L(τ) at τ = Hy

4 ,

uic,jc+ 1
4

= L

(
Hy

4

)
=

5
32
uic,jc+1 +

15
16
uic,jc −

3
32
uic,jc−1. (22)

Data from this point, uif,jf and uif+1,jf will be used to produce a quadratic interpolant through
the fine data,

L(η) =
2∑
j=0

uj · 2∏
f=0,f 6=j

η − ηf
ηj − ηf


= uic,jc+ 1

4

(2η − hx)(2η − 3hx)
(Hx + hx)(Hx + 3hx)

− uif,jf
(2η +Hx)(2η − 3hx)

2hx(Hx + hx)

+ uif+1,jf
(2η +Hx)(2η − hx)

2hx(Hx + 3hx)
,
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where η = 0 is located at the coarse/fine interface, (if − 1
2 , jf). Taking the derivative of this

function and evaluating at η = 0 will give a first derivative approximation of the interface,

∂xuif− 1
2
,jf = L′(0) = − 8hx

(Hx + hx)(Hx + 3hx)
uic,jc+ 1

4

− Hx − 3hx
hx(Hx + hx)

uif,jf +
Hx − hx

hx(Hx + 3hx)
uif+1,jf . (23)

Substituting (22) into (23) will replace the unknown data point, uic,jc+ 1
4
, with known data

points,

Fif− 1
2
,jf = − 8hx

(Hx + hx)(Hx + 3hx)

(
5
32
uic,jc+1 +

15
16
uic,jc −

3
32
uic,jc−1

)
− Hx − 3hx

hx(Hx + hx)
uif,jf +

Hx − hx
hx(Hx + 3hx)

uif+1,jf .

The final scheme for this approximation is then

Fif− 1
2
,jf = −5

4
hx

(Hx + hx)(Hx + 3hx)
uic,jc+1 −

15
2

hx
(Hx + hx)(Hx + 3hx)

uic,jc

+
3
4

hx
(Hx + hx)(Hx + 3hx)

uic,jc−1 −
Hx − 3hx

hx(Hx + hx)
uif,jf

+
Hx − hx

hx(Hx + 3hx)
uif+1,jf . (24)

To determine the order of this scheme, Taylor series expansions of each data point will need to
be calculated in terms of the interface point uif− 1

2
,jf . These are,

uic,jc+1 = uif− 1
2
,jf −

1
2
Hx∂xuif− 1

2
,jf +

3
4
Hy∂yuif− 1

2
,jf +

1
8
Hx

2∂2
xuif− 1

2
,jf

− 3
8
HxHy∂x∂yuif− 1

2
,jf +

9
32
Hy

2∂2
yuif− 1

2
,jf +O(Hx

3) +O(Hy
3),

uic,jc = uif− 1
2
,jf −

1
2
Hx∂xuif− 1

2
,jf −

1
4
Hy∂yuif− 1

2
,jf +

1
8
Hx

2∂2
xuif− 1

2
,jf

+
1
8
HxHy∂x∂yuif− 1

2
,jf +

1
32
Hy

2∂2
yuif− 1

2
,jf +O(Hx

3) +O(Hy
3),

uic,jc−1 = uif− 1
2
,jf −

1
2
Hx∂xuif− 1

2
,jf −

5
4
Hy∂yuif− 1

2
,jf +

1
8
Hx

2∂2
xuif− 1

2
,jf

+
5
8
HxHy∂x∂yuif− 1

2
,jf +

25
32
Hy

2∂2
yuif− 1

2
,jf +O(Hx

3) +O(Hy
3),

uif,jf = uif− 1
2
,jf +

1
2
hx∂xuif− 1

2
,jf +

1
8
hx

2∂2
xuif− 1

2
,jf +O(hx3),

and

uif+1,jf = uif− 1
2
,jf +

3
2
hx∂xuif− 1

2
,jf +

9
8
hx

2∂2
xuif− 1

2
,jf +O(hx3).
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Substituting these expansions into (24) will result in the following truncation error,

Fif− 1
2
,jf = ∂xuif− 1

2
,jf+1 +O

(
H3
xhx

(Hx + hx)(Hx + 3hx)

)
+O

(
H3
yhx

(Hx + hx)(Hx + 3hx)

)
.

Just as in the linear interpolant case, an estimation for the interface point (if, jf + 1
2) will

also be needed. For the first quadratic interpolant, the three coarse nodes that are adjacent or
cornered with the coarse/fine interface will be used,

L(τ) =
2∑
j=0

uj · 2∏
f=0,f 6=j

τ − τf
τj − τf


= uic,jc+1

τ(τ −Hx)
2Hx

2 − uic+1,jc+1
(τ −Hx)(τ +Hx)

Hx
2 + uic+2,jc+1

τ(τ +Hx)
2Hx

2 ,

where τ = 0 is associated with the center point, (ic + 1, jc + 1). Evaluating at τ = −Hx
4 will

give the value, uic+ 3
4
,jc+1, that is aligned with the fine data

uic+ 3
4
,jc+1 = L

(
−Hx

4

)
=

5
32
uic,jc+1 +

15
16
uic+1,jc+1 −

3
32
uic+2,jc+1. (25)

Using the three fine data points uic+ 3
4
,jc+1, uif,jf , and uif,jf−1, a quadratic interpolant is

created,

L(η) =
2∑
j=0

uj · 2∏
f=0,f 6=j

η − ηf
ηj − ηf


= uic+ 3

4
,jc+1

(2η + hy)(2η + 3hy)
(Hy + hy)(Hy + 3hy)

− uif,jf
(2η −Hy)(2η + 3hy)

2hy(Hy + hy)

+ uif,jf−1
(2η −Hy)(2η + hy)

2hy(Hy + 3hy)
,

where η = 0 occurs at the coarse/fine interface. Taking the derivative and evaluating at η = 0
yields,

∂yuif,jf+ 1
2

= L′(0) =
8hy

(Hy + hy)(Hy + 3hy)
uic+ 3

4
,jc+1

+
Hy − 3hy

hy(Hy + hy)
uif,jf −

Hy − hy
hy(Hy + 3Hy)

uif,jf−1. (26)

Combining (25) and (26) produces a scheme in terms of known data points given by

Fif,jf+ 1
2

=
8hy

(Hy + hy)(Hy + 3hy)

(
5
32
uic,jc+1 +

15
16
uic+1,jc+1 −

3
32
uic+2,jc+1

)
+

Hy − 3hy
hy(Hy + hy)

uif,jf −
Hy − hy

hy(Hy + 3Hy)
uif,jf−1.

10



Fully reduced, the scheme is

Fif,jf+ 1
2

=
5
4

hy
(Hy + hy)(Hy + 3hy)

uic,jc+1 +
15
2

hy
(Hy + hy)(Hy + 3hy)

uic+1,jc+1

− 3
4

hy
(Hy + hy)(Hy + 3hy)

uic+2,jc+1 +
Hy − 3hy

hy(Hy + hy)
uif,jf

− Hy − hy
hy(Hy + 3Hy)

uif,jf−1. (27)

To determine the accuracy of (27), the Taylor series expansions in terms of uif,jf+ 1
2

will
have to be found for each of the five nodes involved. They are

uic,jc+1 = uif,jf+ 1
2
− 3

4
Hx∂xuif,jf+ 1

2
+

1
2
Hy∂yuif,jf+ 1

2
+

9
32
Hx

2∂2
xuif,jf+ 1

2

− 3
8
HxHy∂x∂yuif,jf+ 1

2
+

1
8
Hy

2∂2
yuif,jf+ 1

2
+O(Hx

3) +O(Hy
3),

uic+1,jc+1 = uif,jf+ 1
2

+
1
4
Hx∂xuif,jf+ 1

2
+

1
2
Hy∂yuif,jf+ 1

2
+

1
32
Hx

2∂2
xuif,jf+ 1

2

+
1
8
HxHy∂x∂yuif,jf+ 1

2
+

1
8
Hy

2∂2
yuif,jf+ 1

2
+O(Hx

3) +O(Hy
3),

uic+2,jc+1 = uif,jf+ 1
2

+
5
4
Hx∂xuif,jf+ 1

2
+

1
2
Hy∂yuif,jf+ 1

2
+

25
32
Hx

2∂2
xuif,jf+ 1

2

+
5
8
HxHy∂x∂yuif,jf+ 1

2
+

1
8
Hy

2∂2
yuif,jf+ 1

2
+O(Hx

3) +O(Hy
3),

uif,jf = uif,jf+ 1
2
− 1

2
Hy∂yuif,jf+ 1

2
+

1
8
Hy

2∂2
yuif,jf+ 1

2
+O(hy3),

and

uif,jf−1 = uif,jf+ 1
2
− 3

2
Hy∂yuif,jf+ 1

2
+

9
8
Hy

2∂2
yuif,jf+ 1

2
+O(hy3).

Substituting these expansions into (27) yields,

Fif,jf+ 3
2

= ∂yuif,jf+ 3
2

+O

(
H3
yhy

(Hy + hy)(Hy + 3hy)

)
+O

(
H3
xhy

(Hy + hy)(Hy + 3hy)

)
.

Using (24) and (27), the discretization scheme (7) is updated to include only those data points

11



that are known. So,

FDif,jf =
Kif+ 1

2
,jf (Pif+1,jf − Pif,jf )

hx
2

−
Kif− 1

2
,jf

hx

[
8hx

(Hx + hx)(Hx + 3hx)

(
5
32
uic,jc+1 +

15
16
uic,jc −

3
32
uic,jc−1

)
− Hx − 3hx

hx(Hx + hx)
uif,jf +

Hx − hx
hx(Hx + 3hx)

uif+1,jf

]
+

Kif,jf+ 1
2

hy

[
8hy

(Hy + hy)(Hy + 3hy)

(
5
32
uic,jc+1 +

15
16
uic+1,jc+1 −

3
32
uic+2,jc+1

)
+

Hy − 3hy
hy(Hy + hy)

uif,jf −
Hy − hy

hy(Hy + 3Hy)
uif,jf−1

]
−

Kif,jf− 1
2
(Pif,jf − Pif,jf−1)

hy
2 ,

and

(∇ · (K(x)∇P ))if,jf = FDif,jf +O
(

H3
x

(Hx + hx)(Hx + 3hx)

)
+O

(
H3
y

(Hy + hy)(Hy + 3hy)

)

+ O

(
H3
y

(Hx + hx)(Hx + 3hx)

)
+O

(
H3
x

(Hy + hy)(Hy + 3hy)

)
.

As in the linear interpolation case, the same unknowns that were replaced with the first deriva-
tive approximations are again replaced; this time with the approximation determined by the
quadratic interpolants.

2.2.3 Comparison of Linear and Quadratic Interpolation

Quadratic interpolation is an order of magnitude more accurate than linear interpolation.
Based on this information alone, quadratic interpolation would seem more desirable; however,
this scheme requires a larger support than the linear scheme. In 2D, linear interpolation of
the fine cell (i, j) that is adjacent to two coarse cells and two fine cells will use a total of five
cells for calculations. In quadratic interpolation, (i, j) would require eight cells (see Figure 4).
The larger support of the quadratic interpolation would require more communication in parallel
environments.

2.2.4 Intrinsic and Relative Permeability

Intrinsic permeability will be supplied by the user for each cell in the coarsest grid. Daughter
cells will inherit the parent’s value. At the coarse/fine boundary, harmonic averaging between
the coarse and fine cell will be used to determine the instrinsic permeability at the interface.
Averaging the coarse grid data with the fine grid data is acceptable in this situation since a
ghost fine node would also inherit the coarse cell’s data.

At the coarse/fine interface, relative permeability will be calculated at the ghost node
using the pressure head found at that node described earlier in the paper. This value as well as
the relative permeability from the neighboring fine cell will be used in upwinding to determine
the relative permeability at the coarse/fine boundary.
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Figure 4: Left: Support for cell (if,jf) consists of 5 cells using linear interpolation. Right:
Support for cell (if,jf) consists of 8 cells using quadratic interpolation.

2.2.5 Boundary Conditions

In cell-centered grids, the boundary data will lie on half points, i.e. (−1
2 , j). Extrapolation

will be used from this data to create a ghost node [1]. If Dirichlet boundary data is given, then
a parabola can be created from u− 1

2
,j , u0,j , and u1,j , which can be used to extrapolate the value

at the ghost node (−1, j). If Neumann boundary conditions are used, then the parabola will
be created through u0,j and u1,j using the given normal derivative at (−1

2 , j).

3 Designing and Implementing a Spline/Look-up Capability

ParFlow employs the Van Genuchten model for relative permeability given by

kr(p) =

(
1− (αp)n−1

(1+(αp)n)m

)2

(1 + (αp)n)m/2
,

where kr(p) is the relative permeability, p is the pressure head of water, α and n are soil
parameters, and m = 1 − 1/n. Prior to this project, this function was calculated directly.
Because of the fractional exponents, these computations could become costly, especially when
they were evaluated at every point in a large scale problem. To address this cost, a spline
lookup capability was added as an option for this calculation. The remainder of this paper will
explain how a spline was applied to the code currently in use for ParFlow. The only source
code file that changed was problem phase rel perm.c.

3.1 Setup

To begin, a new struct was created called “VanGTable”. In this struct are pointers to five
doubles: x, a, d, a der, and d der. Three pointers were also added to the Type1 struct (the struct
associated with the Van Genuchten calculation of relative permeability): num sample points
(integer), min pressure head (double), and lookup tables (VanGTable). The pointers in the
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VanGTable struct will be used to calculate the spline, which will be explained in a later section.
The num sample points will be an input from the user telling how many points should be
used to create the spline table. The user should have an idea of how many points will be
needed to capture the curve accurately enough to solve the problem. The min pressure head
is also specified by the user; this should be the smallest pressure head used by the problem in
a specific region. If a smaller one is used, the relative permeability will be calculated as the
relative permeability of the minimum pressure head specified by the user. Note that the user
will specify a num sample points and a min pressure head for each region.

3.2 Functions

Two functions were created within the file: “*VanGComputeTable” and “VanGLookup”.

3.2.1 *VanGComputeTable

*VanGComputeTable will return a pointer to a VanGTable. The inputs are the number of
interpolation points, the minimum pressure head, α, and n. First, the function allocates a new
VanGTable, creating pointers to five arrays set to the size of num sample points + 1. After,
some local variables are created that will contribute to the spline calculations: h, f , and del
are arrays of doubles that represent the distance between successive interpolation points, the
Van Genuchten function evaluated at those interpolation points, and the slope of the secant
lines between successive points, respectively. Two other arrays, f der and del der, are similarly
used for the derivative of the Van Genuchten function. The variables alph, beta, and magn
are doubles that are used to ensure that the spline is monotonic (will be explained later). The
doubles opahn, ahnm1, and coeff are used to calculate the Van Genuchten function and its
derivative at the specified interpolation points. interval is a double that contributes to the
calculation of where the interpolation points will be. Currently, the code uses a fixed width of
minimum pressure head divided by the number of sample points + 1. The variable m is set to
1−1/n. After creating the necessary variables, the code will use the evenly spaced interpolation
points to calculate the value of the Van Genuchten function and its derivative at those points,
placing them in the arrays a and a der, respectively, located in the VanGTable.

Now, the monotonic cubic spline will be described [3]. First, a non-monotonic cubic Hermite
spline was used. When this failed in the actual code, tests were performed in MatLab that
showed that a monotonic spline would do a better job at interpolating the function and its
derivative. To create a monotonic spline, several steps must be performed. First, the slopes of
the secant lines between successive points must be calculated and placed in the del array

del =
fi+1 − fi
ai+1 − ai

,

for i = 0, 1, ..., n− 1. Note that this will be done twice: once for the function and once for the
derivative (placed in the del der array). Next, the tangents at each interpolation point will be
set to the average of the secants calculated using that point

d =
deli + deli−1

2
,

for i = 1, 2, ..., n − 1. Note that these are placed in the VanGTable in the d and d der arrays
for the function and the derivative, respectively.

The last step will be to ensure monotonicity. The code will loop through the secant line
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slopes (del) to check if any are zero. If deli = 0, then fi+1 = fi. As a result, the code will
set di+1 = di = 0 to ensure monotonicity. If deli 6= 0, then an additional step will need to be
taken. First, two new variables will be defined: αi = di/deli and βi = di+1/deli [10]. To ensure
monotonicity, the following condition is needed,

α− (2α+ β − 3)2

3(α+ β − 2)
> 0.

This can be accomplished by restricting the magnitude of (αi, βi) to a circle of radius three [10]
and modifying the values of di and di+1 in the following way:

di =
3αideli√
α2
i + β2

i

,

and
di+1 =

3βideli√
α2
i + β2

i

.

After this, the monotonic spline is complete. The function will return the VanGTable containing
the location of the interpolation points, the function value at those points, and the average of
the secants at successive points (with necessary modifications to ensure monotonicity). The
equivalent data for the Van Genuchten derivative will also be included.

3.2.2 VanGLookup

VanGLookup will return the relative permeability calculated using the VanGTable from *VanG-
ComputeTable. This function takes as input the pressure head, number of interpolation points,
a pointer to the VanGTable, and an integer specifying if the Van Genuchten function or its
derivative is needed. First, the function will determine if the pressure head given is below the
minimum pressure head. If so, the pressure head is set to the minimum and the relative per-
meability will be calculated from the spline using the minimum pressure head. If the pressure
head is greater than the minimum, then a binary search is performed to find the interval in
the VanGTable where the pressure head is located. With the current use of a fixed space inter-
val, a binary search is not needed; however, variably spaced intervals are desired and a binary
search will be needed when this is implemented. After the interval is determined, the relative
permeability can be calculated using the following function [9]

rel perm = (2t3 − 3t2 + 1)ai + (t3 − 2t2 + t)di + (−2t3 + 3t2)ai+1 + (t3 − t2)di+1,

where the ai and di come from the corresponding values in the VanGTable. An if statement
determines if the value needed is for the Van Genuchten function or its derivative.

This function is called in the section of the code involving “case 1” (the Van Genuchten
relative permeability section). If the alphas and ns are given in a file, then there is no need
to compute a spline and so the original code will remain. If they are given by region, then
VanGLookup will be called and a spline table will be created for each region. If the user
specifies the number of interpolation points in the input file to be zero, then the function will
continue as it has before: calculating the relative permeability at every point using the Van
Genuchten function. A specified number of interpolation points other than zero will result in
the spline lookup table being used.
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3.3 Preliminary Results

The current modified code has been run on the crater2D problem supplied in the “test”
folder in the ParFlow directory. This problem was one of the more difficult ones since the
large alphas and small ns resulted in a very steep curve near pressure head equal to zero. Many
interpolation points were needed to capture this area when calculating the relative permeability
of the original function. However, the derivative was easy to capture with fewer interpolation
points. As a result of the difficult parameters, the modified code resulted in no speedup or
slowdown in the overall time of the run. These results are promising, however, since several
modifications can be made that will ensure speedup: different interpolation points between the
function and the derivative and variably spaced interpolation point intervals. In addition, this
problem was small compared to the real problems that would be used; the cost of calculating
a VanGTable for each region would be amortized over a problem with a much larger size.

3.4 Future Additions

• Vary the spacing between interpolation points for better accuracy where needed.

• Use linear interpolation where a cubic spline is not needed (depends on α and n).

• Use different interpolation points for the function and the derivative.

• Allow the user to input the interpolation points they want the code to use.
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